UV-Enhanced
Silicon Avalanche Photodiode
SUR-Series

Description

The SUR-Series is based on a silicon “reachthrough” structure with high sensitivity in the DUV/UV wavelength range. Many applications particularly in the medical and bio-medical fields require highly sensitive detectors in the short wavelength range for fluorescent measurements, analytical equipment or scintillation. The benefit of the SUR-Series is an extremely high sensitivity and low noise performance operating in the blue wavelength range and superior to any similar detector available presently on the market.

An important additional advantage of the new reach-through APD is its unmatched noise and sensitivity performance over the widest commercially available wavelength range, from 260 nm to 1000 nm. The diameter of the active area is 0.5 mm. The SUR-Series will be delivered in a special, hermetical sealed TO-46 package optimized for the UV wavelength range.

Features

▪ Very High Quantum Efficiency at DUV / UV
▪ Low Noise
▪ 500 µm Diameter Active Area
▪ UV Optimized Hermetical Package

Applications

▪ Fluorescent Measurements
▪ Analytical Equipment
▪ Medical
▪ Scintillation
▪ High speed photometry
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>-55</td>
<td></td>
<td>100</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Temperature*</td>
<td>-40</td>
<td></td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>Reverse Current Peak Value (CW Operation)</td>
<td></td>
<td></td>
<td>200</td>
<td>µA</td>
</tr>
<tr>
<td>Reverse Current Peak Value (1 sec Duration)</td>
<td></td>
<td>1</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Forward Current I_F at 25°C Average Value (CW Operation)</td>
<td></td>
<td>5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Forward Current I_F at 25°C Peak Value (1 sec Duration)</td>
<td></td>
<td>50</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Max. Total Power Dissipation</td>
<td></td>
<td>60</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>Soldering (for 5 sec.)</td>
<td></td>
<td>200</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

* Extended operating temperature range possible for special design considerations
Electrical Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength range</td>
<td>260</td>
<td>1000</td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>Active area diameter</td>
<td>0.5</td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Breakdown voltage @ ld= 10 µA</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>V</td>
</tr>
<tr>
<td>Responsivity @ M= 100</td>
<td></td>
<td></td>
<td></td>
<td>A/W</td>
</tr>
<tr>
<td>260 nm</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 nm</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350 nm</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 nm</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>650 nm</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEP @ M= 100</td>
<td></td>
<td></td>
<td></td>
<td>fW/sqrt [Hz]</td>
</tr>
<tr>
<td>280 nm</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 nm</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350 nm</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 nm</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient @ M= 100</td>
<td>0.9</td>
<td></td>
<td>V/K</td>
<td></td>
</tr>
<tr>
<td>Dark Current, ld @ M= 100</td>
<td>200</td>
<td></td>
<td>pA</td>
<td></td>
</tr>
<tr>
<td>Noise current @ M= 100</td>
<td>2</td>
<td></td>
<td>pA/sqrt [Hz]</td>
<td></td>
</tr>
<tr>
<td>Capacitance @ M= 100</td>
<td>1.4</td>
<td></td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Rise Time @ M= 100 & 400 nm & RL= 50 Ohms</td>
<td>2</td>
<td></td>
<td>nsec</td>
<td></td>
</tr>
<tr>
<td>Cutoff frequency @ M= 100</td>
<td>150</td>
<td></td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>
UV-Enhanced Silicon Avalanche Photodiode
SUR-Series

Fig. 1: Responsivity vs. Noise Relationship

Fig. 2: Responsivity vs. Bias for 405 nm and 905 nm

Fig. 3: Typical Capacitance vs. Bias Voltage

Fig. 4: Spectral vs. Gain

Fig. 5: Current vs. Bias Voltage Wavelength = 260 nm

Fig. 6: NEP vs. Bias Voltage (Iph = 0)

- Germany & Other Countries
 Laser Components GmbH
 Tel: +49 8142 2864 – 0
 Fax: +49 8142 2864 – 11
 info@lasercomponents.com
 www.lasercomponents.com

- USA
 Laser Components USA, Inc.
 Tel: +1 603 821 – 7040
 Fax: +1 603 821 – 7041
 info@lasercomponents.com
 www.lasercomponents.com

- United Kingdom
 Laser Components (UK) Ltd.
 Tel: +44 1245 491 499
 Fax: +44 1245 491 801
 info@lasercomponents.co.uk
 www.lasercomponents.co.uk

- France
 Laser Components S.A.S.
 Tel: +33 1 39 59 52 25
 Fax: +33 1 39 59 53 50
 info@lasercomponents.fr
 www.lasercomponents.fr
Product Number Designations

<table>
<thead>
<tr>
<th>S</th>
<th>U</th>
<th>R</th>
<th>5</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>

Diameter
- **500** = 500 µm

Package Style
- **S8** = TO-46 (2 pin) with TEC
- **T6** = TO-37 (3 with TEC)
- **T8** = TO-8 (with 2 stage TEC)
Detectors

Germany & Other Countries
Laser Components GmbH
Tel: +49 8142 2864 – 0
Fax: +49 8142 2864 – 11
info@lasercomponents.com
www.lasercomponents.com

USA
Laser Components USA, Inc.
Tel: +1 603 821 – 7040
Fax: +1 603 821 – 7041
info@lasercomponents.com
www.laser-components.com

United Kingdom
Laser Components (UK) Ltd.
Tel: +44 1245 491 499
Fax: +44 1245 491 801
info@lasercomponents.co.uk
www.lasercomponents.co.uk

France
Laser Components S.A.S.
Tel: +33 1 39 59 52 25
Fax: +33 1 39 59 53 50
info@lasercomponents.fr
www.lasercomponents.fr

UV-Enhanced Silicon Avalanche Photodiode
SUR-Series

Package Drawings

Package S8 TO-46 (2 pin)

Package T6 TO-37 (with TEC)
UV-Enhanced Silicon Avalanche Photodiode
SUR-Series

Package Drawings

Package T8 TO-8 (with TEC)
Cooled Versions

The one stage or two stage thermoelectrically cooled APD can be used for different reasons:

- To reduce the thermal noise for very weak signal detection. The one stage TEC (SUR500T6) has been design to operate the APD down to 0°C whereas the two stage TEC (SUR500T8) version can be operated at –18°C when the ambient temperature is 22°C.
- To maintain a constant APD temperature irrespective of the ambient temperature. Because APD breakdown voltage decreases with temperature, the TE cooler allows a single operating voltage. Also, this configuration allows constant APD performance over an extended ambient temperature range.

The integrated thermistor can be used to monitor the APD temperature and can be used to implement a TE cooler feedback loop to keep the APD at a constant temperature or/and to implement a temperature compensation on the APD bias voltage. A proper heat-sink is required to dissipate the heat generated by the APD and the TE cooler.

Product Changes

LASER COMPONENTS reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.

Ordering Information

Products can be ordered directly from LASER COMPONENTS or its representatives. For a complete listing of representatives, visit our website at www.lasercomponents.com

Custom designed products are available on request.